李卫华-全讯国际

中文 | english
 
李卫华
发布时间:2014-02-17   访问次数:22546   作者:


李卫华      教授   博士生导师


email:whli.at.ecust.edu.cn(用@替换.at.)


【个人简介】

1999年毕业于安徽师范大学化学系,获学士学位;2002年毕业于华南师范大学化学系,获硕士学位;2005年毕业于中国科学院上海药物研究所,获博士学位。2005年9月至2007年6月在华东理工大学药学院从事博士后研究;2007年7月至2009年6月获日本学术振兴会(jsps)奖学金,在日本千叶大学药学部从事博士后研究。2009年9月到华东理工大学药学院工作,历任副研究员,教授。

  

【研究方向】

1)蛋白质/酶的计算模拟和药物设计

2)人工智能方法在药物发现和设计中的应用


主要从事蛋白质/酶的计算模拟和计算机辅助药物设计研究工作。运用计算模拟和人工智能技术,围绕p450酶介导的药物代谢、化合物admet性质预测、核受体的药物发现和设计等方面开展研究。研究工作先后发表于j chem inf model, j chem theory comput, chem eur j, mol pharm, chem res toxicol, drug metab dispos期刊。作为主持人先后承担国家自然科学基金、上海市自然科学基金等科研项目;作为项目骨干参与国家重点研发计划课题新药创制重大专项课题

  

【近期主要论文】


1)  yanjun feng, changda gong, jieyu zhu, guixia liu, yun tang*, and weihua li*. unraveling the ligand-binding sites of cyp3a4 by molecular dynamics simulations with solvent probes. j. chem. inf. model. 2024, 64, 3451−3464.


2yanjun feng, changda gong, jieyu zhu, guixia liu, yun tang*, and weihua li*. prediction of sites of metabolism of cyp3a4 substrates utilizing docking-derived geometric features. j. chem. inf. model. 2023,  63, 4158-4169.


3)  minjie xu, zhou lu, zengrui wu, minyan gui, guixia liu, yun tang*, and weihua li*. development of in silico models for predicting potential time-dependent inhibitors of cytochrome p450 3a4. mol. pharmaceut. 2023, 20, 194-205.


4) longqiang li, zhou lu, guixia liu, yun tang, and weihua li*. machine learning models to predict cytochrome p450 2b6 inhibitors and substrates. chem. res. toxicol. 2023, 36, 1332-1344.


5)  longqiang li, zhou lu, guixia liu, yun tang, and weihua li*. in silico prediction of human and rat liver microsomal stability via machine learning methods. chem. res. toxicol. 2022, 35, 1614−1624.


6)  minjie xu, hongbin yang, guixia liu, yun tang*, and weihua li*. in silico prediction of chemical aquatic toxicity by multiple machine learning and deep learning approaches. j. appl. toxicol. 2022, 42,1766- 1776.


7)  xiaoxiao zhang, piaopiao zhao, zhiyuan wang, xuan xu, guixia liu, yun tang, and weihua li*. in silico prediction of cyp2c8 inhibition with machine learning methods. chem. res. toxicol.2021, 34, 1850-1859.


8)  xiaoxiao zhang, minjie xu, zengrui wu, guixia liu, yun tang, and weihua li*. assessment of cyp2c9 structural models for site of metabolism prediction. chemmedchem 2021, 16, 1754-1763.


9)  junhao li, yue chen, yun tang, weihua li*, and yaoquan tu*. homotropic cooperativity of midazolam metabolism by cytochrome p450 3a4: insight from computational studies. j. chem. inf. model. 2021, 61, 2418-2426.


10) junhao li, yang zhou, yun tang, weihua li*, and yaoquan tu*. dissecting the structural plasticity and dynamics of cytochrome p450 2b4 by molecular dynamics simulations. j. chem. inf. model.  2020, 60, 5026-5035.


11) yue chen, junhao li, zengrui wu, guixia liu, honglin li, yun tang*, and weihua li*. computational insight into the allosteric activation mechanism of farnesoid x receptor.  j. chem. inf. model. 2020, 60, 1540-1550.


12) junhao li, yun tang, weihua li*, and yaoquan tu*. mechanistic insights into the regio- and stereoselectivities of testosterone and dihydrotestosterone hydroxylation catalyzed by cyp3a4 and cyp19a1. chem. eur. j. 2020, 26, 6214-6223.


13) yuhan xue, junhao li, zengrui wu, guixia liu, yun tang, and weihua li*. computational insights into the different catalytic activities of cyp3a4 and cyp3a5 towards schisantherin e. chem. biol. drug des. 2019, 93, 854-864.


14) junhao li, hongxiao zhang, guixia liu, yun tang, yaoquan tu* and weihua li*. computational insight into vitamin k1 ω-hydroxylation by cytochrome p450 4f2. front. pharmacol. 2018, 9, 1065.


15) yue chen, hongbin yang, zengrui wu, guixia liu, yun tang, and weihua li*. prediction of farnesoid x receptor disruptors with machine learning methods. chem. res. toxicol. 2018, 31, 1128-1137.


16) hanwen du, junhao li, yingchun cai, hongxiao zhang, guixia liu, yun tang*, and weihua li*. computational investigation of ligand binding to the peripheral site in cyp3a4: conformational dynamics and inhibitor discovery. j. chem. inf. model. 2017, 57, 616-626.


17) hanwen du, yingchun cai, hongbing yang, hongxiao zhang, yuhan xue, guixia liu, yun tang, and weihua li*. in silico prediction of chemicals binding to aromatase with machine learning methods. chem. res. toxicol. 2017, 30, 1209-1218.


18)  weihua li, jing fu, feixiong cheng, mingyue zheng, jian zhang, guixia liu, and yun tang. unbinding pathways of gw4064 from human farnesoid x receptor as revealed by molecular dynamics simulations. j. chem. inf. model. 2012, 52, 3043-3052.


19)  feixiong cheng, yue yu, yadi zhou, zhonghua shen, wen xiao, guixia liu, weihua li*, philip w. lee, and yun tang*. insights into molecular basis of cytochrome p450 inhibitory promiscuity of compounds. j. chem. inf. model. 2011, 51, 2482-2495.


20)  feixiong cheng, yue yu, jie shen, lei yang, weihua li*, guixia liu, philip w. lee, and yun tang*. classification of cytochrome p450 inhibitors and noninhibitors using combined classifiers. j. chem. inf. model. 2011, 51, 996-1011.


21) jie shen, feixiong cheng, you xu, weihua li*, and yun tang*. estimation of adme properties with substructure pattern recognition. j. chem. inf. model. 2010, 50, 1034-1041.



其它论文:

 

 
网站地图